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ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS 1

BY t_,OBERT _,V. LEONARD

SUMMARY

Williams t?/p_ modal solutions qf the eh_m_'ntary

and Timoxhenko beau+ equations are prese,ted .for

the transient respo.,_e qf sereral uniform b_am,_' t.

a general apIdied load. I_rample computalio.s are
_hown fi>r a h'ee;h'ee beam subject to variou._' c,mce.-
trated loads at its center. 77_e discus,_'io, im_ht<tes

.factors il+fluencing the co,rergence of modal solu-

tio.s aml.factors to be co.shtered it_ a choice qf beam

theory. Results obtai,ed by two numerical proce-
dures, the traceling-ware method and Ih,ubolt's

method, are also preuelded and dixeus,_'ed.

INTRODUCTION

The probh,nl of obtaining [he response of elastic

structures 1o rapidly apl)lied loading is of co,-

tinuing concern to the aircraft industry imlsmuch
as aircraft structures mus[ withstand blasts, land-

ing impacts, and a variety of other transient loads.
In or<let 1o sludy the various factors involved in

this ln'obh,m, it, is desirable to consider simtflified
slructures for which lhorough studies are possible.

Among the simples[ examples of continuous elas-

tic slructures are mliform beams. Consequenlly,

beams have been the subject of a consideral)te

number of transient response investigations, and
a variety of solutions of particular bealn t)robhqns

are sca ttere(l throughout the existing literature.

(See, for examl)le , refs. I h) 7. For an extensive
bibliography, see ref. 7.)

It is the purpose of the l)resent paper to provi<le
a relatively comphqe source of useful mo(lal solu-

lions and to discuss the factors influencing the

covergen('e of too(hal solut ions and factors involved

in 1he choice of the l)rOl)er |)earn theory 1o be use(I

in an analysis. To this end, a consistent presen-
tation is made of Williams type modal solutions

I Sut)erse(les NACA Technical Note 4244 by I(obert _,V, Leonard, 1958.

for the response to a COml)h, tely general transient

load of three pertinent uniform beams (a free-fi'ee
1)earn with a ('oncentraled mass as its center, a

('anlih,ver I)eam, and a simply supported I)eam).
(Some (hq)li('ation of the existing literature is in-

('huh,(l for comt)h,teness. ) Solutions, base(1 on

I)oth lhe elementary and Timoshenko beam theo-

ries, are obhfine(I I)y a I)rocess which can t)e

rea(lih _ exh,n(h,d to lhe solution of probh, ms with
time-del)eu(lenl boundary con(litions. The al)l)li-
('a lion of the method is illustrated for the case of

the free-free 1)earn with a con('entrate(I mass, and
results for all the I)eams are summarize(I in tat)h,s

I and II. In addition, some tyl)ical computed

results are shown for a free-free beam subjecte(I to

various concentrated loa(li,_gs.

Another t)urpose of the I)resen! l)al)er is a criti('al
discussion of two tmmeri('al t)roce(lures, the travel-

ing-wave method (ref. 6) amt lloubolt's method

(ref. 8). The procedures are briefly described and

c.ompuhltions made with bolh methods are com-
I)ared with the modal rcsttlts.

SYMBOLS

+t_ effective shear-carrying area of ('ross section

C arl)it rary constant

c_ prol)agalion velocity of bending (liscontin-

uiiies, /_

<'2 propagation veh>cily of shear discontimfi-

lies .t/A'("
1/ m.

E Young's mo(lulns of elasticily
f at)plied ('oncenlra, te(l load

] dinwnsionless ai)i)lied concentrated load,

E[
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(,+ shear modulus of elasticity
I moment of inertia of cross section

i,j integers

•,) / Ht

k diinensionless frequency l)arameter, wl'_/-Ei

kul dinwnsionless rotary inertia paranleter, r/]

t', dimensionless transverse shear parameter,

I I-E1

/ length of |)earn (half-lenglh in case of free-

free beam)

3[ bending moInent (see fig. 1)

_iI dimensionless bending moment, 2[I/EI

._I_ dimensionless static bending moment

m, generalized mass

m mass per unit length
m,. ('otu'etltrated lnass

n-L ratio of the concentrate<l nmss to total mass

of the beam, m_/ml

I)_ gem'ralized force

q applied distributed h)a(t (see fig. 1)
7] diinensionh,ss applie(t distribut(,d loml.

qlS/El

r ('ross-sectiotml radius of gyration
1 tilne

l" transverse shear for('c (see fig. 1)
dimensionh'ss transverse shear force, 17"-,/lr+[

I" dimensionless static transverse shear for('e

J: coordinate along the beam

!1 (hqh,ction (see fig. 1)
._ (limet,sionh'ss deflection, ?l/l

_, dimensionless translatiomfl coml)onent of
ith mmn'al mo(le

_ dinletlsionlcss static deflection

._ (limetlsionless rigid-body translation

a,:+k,2k_ 2

I)irac delta function (<$(t/) 0 for_(_)

0 dummy variabh, of integration

sin fl_--fl* sinh a_

cos fl_+l cosh a_

dimensionless space coordinate, J]l

t ls,+',r
r (timensionless time, fi_/_

_, ith generalized coordinate
;l' rotation of beam cross section

_ rotational coinponent of ith mmu'al morn,
¢_ static rotation of t)eain cross section

w circular frequency of nat.ural vibration

1(+-) step function (1(+-)=0 for r_0; l(+.)=l for
+.>0)

Matrix notation :

[ ] rectangular matrix

[ ] row matrix
] i column matrix

[ ] diagonal malrix

1)rim(,_ and Ronum numeral superscripts are use(I

to de( ol.e partial (tifferentiation with respect it) _.
Dols denote partial (tifterenliation with respect
to r.

WILLIAMS TYPE MODAL SOLUTIONS

In normal-mode solutions for the response of

|)eanu, to transient loads, the response is expanded
in ler_ns of a series of normal mo(les of lhe t)eam.

The c,>efficients of the expansion (the generalized

coordinates) are determined front the governing

difl'er(ntial equations and the boundary aml

initial conditions. Williams type modal solulions

(ref. 2) (lifter from ordinary normal=mode solutions

by virtue of the isolation of that portion of lhe

respol se which may I)e obtained in ch)sed form I)y
a i)r(cess of direct integration the s(>-c_:Jh,d

"star| _" portion of the response. Only the rem_iu-

ing "( ynamic" portion of the response is expanded
in ser!es form.

Tit<, advantage of the Williams method over

or<litp_.ry modal solutions is its ability to yMd, for

many loading conditions, a more accuralc resuh
with the same number of terms in the series.

(Set,, Jor example, refs. 4 and 5.) Ii is l)artictflarly

advaltageous where the response ftmction is

discontinuous. (An example of this is the deter-

nfination of the shear due to a concentrated load.)

The discontinuity is contained exactly in the

separated static t)ortion of the response and the
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series is only required to rel)ro(hw(, a continuous
remaind(,r.

In the Williams met, hod, the isolat(,d portion of

the response is ternwd static because significant

parts of the inertia forces are ignored in its

deternfinatiotl. In general, however, it is time

(lependetlt by virtue of tit(, time (l(q)cndence of the

applied load and of the nonhomogeneotls tinte-
dependent botmdary conditions if su(.h arc im-

posed. In the case of beams with a [ix(,,[ point, of

reference, stwh as ('antih, ver or siml)ly supl)orted

I)eams, all inertia forces are iguored iti the dehw-

ruination of this static l)art of tit(, resl)onse ; fi)r

beams with rigid-body frec,h)ms, howev(w, the

inertia for('es due to tit(, rigi([-body motiou must
be taken iuto a('coutlt.

()ne method of obtaittirtg Williams type modal
solutions is illustrated herein for both the ele-

mentary aud Timoshenko beam theories.

ELEMENTARY BEAM THEORY

Basic equations. The mot ion of a beam

subje<q(,(I to an at)plied lo'M of intensity q(x,t) is

usually taken to l)e govertw(I by tit(, Bernotflli-
Euhq' e(luatiott

0 2 _ b2y b2g
0_i72E1 0.,16+ m hi2= q (1)

v+here +c, is tit(+ ('oot'<lituttc along lhc beam, / is

tinte, t/(x,t) is lit(' deflection (see fig. 1), l#l(x) is

the t)ending stiffness of the beam, and re(x) is its

mass per unit length. The internal bending

nloment M(x,t)and the shear force l'(x,t) at any

cross set'lion (see tig. 1) _u'e give. by

_l, ll(|

3[ --El b:y
-b.,+_ (2)

b E1 c)+y
I'=: +b+i b,x 2 (3)

resl)c('t iv ely.

For a uniform beam, these eqtmlions may be
written in tit(, (]itm,nsionh,ss fornts

._, v + 71 q (4)

M = - 7j,, (++)

i" -._"' (t_)

3

, ,f-........ 3
I/"_ !I I

+z j, tl 0y Y

Elementary theory
q

+++--; :

I /+ I /
I I

I I

Y+_x dxOY

Timoshenko theory

v+ +V dx
Ox

l"[(:vR_.: 1. Positive di>dortions and positive internal forces

and motntqlls associated with a lyl)ic:d t)(,:,m <,hqtwnt.

W]lOl'e

_ 'q

=El

VI 2
V'(_, r) = P:I

ql :_
7i(+,v)=El

and 1 is tlt(+ length of the l),mm <it half-length in

tit(' <'as,, of a fr(','-free I>(,am. The ])rimes d,,nol,,

partial diffcrenlialion with r_,spc(.t to +__.ran, I
/

dots <h,n<)t(, partial dill"t,rt,tttiation with rt,sl)t,t't it)

r t �El
-]_ _

Symmetrical free-free beam with concentrated

mass. For synnuelri('al motion of a unifovnt
I)ea,m havin,?.." frt,e ends at +: 1 anti +:--l, atten-

lion is reslri('t('d tt) tit(' ])ortion 0_--<+_--<1 with

ltoun(lary ('on,lilions stat(,(l in tit(' form

_'(0,+-)-0 (Ta)

+y"(0,+-)--0 (71,)
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_"(l ,_-)=o (7,.)

_"' (1 ,r) = 0 (7,t)

If, in addition, the free-free /)eam has a con('en-
trated mass 2m,. located at the center _----(), the

influence of this mass may be introduced into the

problem by changing the boundary condition,
equation (7b), to "_'"(0,r)+_/_(0,r)=0 where

Tff_=m,/ml. On the other hand, the boundary

conditions, equations (7), may be left unchanged

and the differential equation (eq. (4)) altered to

where 6(_) is the l)ira(' delta function. In the
solution that follows, the latter alternative is
chosen.

The beam is assum('d to I)e initially at rest and

undetlected; that is,

_(_,())=_(_,0) 0 (9)

Then the response to a general symmetrical load

(_,r) may be obtained in tit(, Williams form by the
fi)llowing t)roee,ture.

Tit(, solution is assumed in the form

ff (_, r) = ff_(r) + ._,, (5,r) _- _,g,,(r)Tj,(_) (10)
i =0

Tit(, quantity Tj_ is the rigid-bo(ly translation of

the free-free I)eam. It is determined to satisfy

the differential equation

1+_ fo __(_,_)d_

and the inilial conditions

ill)

yr(0)=_r(0)=0 (12)

The quantity _,,(_,r) is the static deflection de-
termined to satisfy

_/"(_,r) -- _ (_,r)-- It +'_a(_)],_,(_') (13)

and the cantilever I)oundary conditions

_._(0,_-) 01

_./(o,T)=o_

_/'(1,r)=o[ (14)

_/"(_,_)=oj

Note Ihat, by virtue of the definition of if,, ff_ also

satisfies Ihe boundary condition ff/"(0,r)----0.

Fimdl:_, the shapes ff_(_) (where i--0, 1, 2 .... )
are tt_e natural vilwalion mo<les of the beam

satisf 3 ing

and the boundary (.omlilions

_,'(o)=o 1

_/"(o1=o _.

7j/'(1)=o1 (it0

F/"0)=oJ

where the dimensionh,ss freqtwncy coefficients k_

"2 / lit

(where i=0, 1,2, . . .) are detined by k,=w_t .ll/p_i.

Fut'ther, it can b(, shown t]lal ti,(, lno(]os ffi(l_)

satisf:: the orthogonality ('oil(lition

'1

,J o

Note that, I)y virtue of the arbitrary sch,(,tion of

a (lat m_ plane for ff_, the dynamic portion of the

respottse, in general, still ('ontains a rigid-body

component (i=0). As delined, the total (telte('tion
ff(_,r) satisfies the t)oun<lary con<litions (e<ts. (7)).

Theft remains the l)rol)lem of (hqermining the co-

eflicicnts ,_(r) so that the differential equation

(eq. _S)) and initial conditions (e(ts. (9)) are.
sat isf_ed.

if _xpression (10) is substituted into differen-

tial e luation (8) and equations (13) and (15) are
taker into account, the differential e(tuation is
re(luc('(I to

_2 [_,,6-)+k?o,(_)]Y,(_) =- _),(_,_) (18)
i=0

Mult plying equation (18) by [1 + Y_ 6(})]_(_) and

integ "ating with respect to _ from 0 to l yiehls, in

view of equation (17), the following result:

_,(r) q_k _O,(r) _--)"'(v) (i=0, 1,2,...) (19)
m_

wher,,_

m,--_f01 [l + 7"ff¢6(_) ]_C,:(_)d_
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Pi(r) =£1 [1 + Y_fl(_)]y,(_)._(_,r)d_
beam are self-equililwating yMd, finally, the gen-
eralize(l load

Similarly, substitution of expression (10) into t.he

initial conditions (eq. (9)) and taking into account

equations (12) lead to the following conditions:

,_,(o) l',(O)m, (/=0, 1, .,'). ..)_

(_,((})_ I"),(0) ([=0, 1, 2,...1

(2o)

A sinlph, formula for the generalized-mass inte-

gn'al mi for i=l, 2, . . . has be(,n presente(] in

reference 9 for uniform beams having any of tlw

usual end conditions (free pinned, or clamped)
but without concentrated masses, hi terms of

tilt, dimensionless quantities defined herein lhe
extension of this formula to beams with a con-

eentrated mass _-_ at, (=0 is

* t
o

1=4 _fl(0)+ 4 ,.2 [kflT)fl(1)--2_'(1)_/"(1)

+_,,2 1)] (i=1,2,...) (21)

For the present case where tile en(l (_= I) is free,
equations (21) redu(,(, to

1
m,=_ [_7_9_(0)+_?(1)1 (: 1, 2,...) (22a)

Tile rigid-body generalized mass (i= O) is seen to be

too= (1 + 7fi',)_,, 2 (22t))

Some reduction of tile generaliz(,d-load int(,gral
P,(r) may also t)e accomplished in general terms

for i=1, 2, . . . . Tile quantity [1-{-_,_(()]_,(()

l _*v'"
may be replaced by _y_ (_) (eq. (15)); then, suc-

cessive integrations by parts and appli('ation of

the t)oundary conditions (eqs. (14) aml 116))

reduce the integral to

Substituting from equation (13) and recalling that,
in natural vibration, the inert ia loads on a free-free

l',(r)=/_i J[_ 7_(_,r)71,(_)d_ (i=1,'2,...) (23a)

On the other hand, for i=0, the quantity Po(r) is
most simply expressed as

l'o(r)=_oJ[' y/_,r)d_ (231))

It might b(, noted here that, in tim usual metho(t

of norInal nmdes, the expressions for generalized

force corr(,sponding to equations (23a) do not
have lhe factor l/k[". This is one manifestation

of tile more rapid (,onv(,rgenee of tile Williams
melhod.

The prol)h, nl now r(,quires direct integration of

equa(ions (II) and (13) for the deflections _# an(|

TJ,, solution of equations (19) for the gem, ralize(t

coor(linates 4_,, and solution of (,qua(ion (15) for
the nal m'al nm(It,s of vil)ration _, with (,a('h

function satisfying tile designated boundary or

initial conditions, l)irect integration of equation

(l l) with lhe initial ('onditions (eqs. (12)) taken

into a('count yMds

Ji'Ji£l (24)

Substituting equation (11)inlo equation (13) and

integrating four times, taking into account tile

boundary conditions on _, (eqs. (14)), yields tile

following result :

v'(_'_)=J0 J0 Jl Jl q(_'r)(d_)4

1 (_4 _a+_,_(_

']'tm solution of e(ttlalioli (19), satisfying also

equations (20), is readily obtained by means of the

l,al)lace transfornl. The result is

cb,(r)=--I"_r) + k' f'P,(O) sin k,(r--O)dO
mf I1"1_do

(i=0, 1, 2,...) (26)

Finally, tile natural-mode shapes _ and the

corresponding frequency equation are derived in

referem'e 10. These results, including the natural-
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inod(, shapes and the frequency equation, arc

sunmlarized for easy reference in table I(a).

Relations are also given in table I(a) for the
moniont 3-7(_,r) and shear l--_(_,r) obtained t)y

substitution of the dcth, ction response into (,qua-

tions (5) and (6). (It is also possible to obtain

these quantities t)y integrating the lotM load as

||O'W('VtW, Soln(' (_lril'(' Inust [)p (,XCl'('is(,d ill tlSillg

these formulas when the load function is discontin-

uous in time or has discontinuous tirst derivatives

with respect to time.)

Other configurations. -The resl)onsc of a
uniform frcc-fret' beam without a con(,ontralcd

mass is given by the results in tat)h, l(a) with

777¢:(). The l'('S[)OliSC of a cantilever beam may

also |)e oblain(,d from the response of the free-free
Iwaln with the ('on('cntrated mass t)y a limiting

I)ro('css in whi<'h the mass n-7_al)proa('hes infinity.
Results for the ('ant ih'ver bt,anl are sUnmlarized il_

tat)h, i(I)). For ('ontph, lent's:, the Williams
sohition for n siniply supported 1)cant is shown in

tatih, 1 ((').

Time-dependent boundary conditions. It is

vcorthwhih, topointout that themelhod outlined

in tJiis l't,l)(il't is directly aliplieabh ' to the solutiol_

of prol)h,nls with nonhom(igcnt,ous tinit,-del)('nd(,nt
I)oundarv (,onditions. Su<.h l)rol)h,ms require th(,

sepeivation of the solulion into two par'is ()nit,

satisfs'ing the tinic-dt'lit'n<hqd Imun(lary (.onditi(in,_
and the other Cal)abh' of being expanded in t(,t'nis

(if tinte-indepcndt, nl fun('tions such its the natural

niotlcs of the ])(,a.nl. (_('(', for t,xaniph,, ret'. 11. >
In lhe Williams meih(id, lifts st,paration is already

nmdt, and tinle-(h,pendent I)otuidary displat'(,nicnts

or t'()t'('(,s liro siinply introdu('t,d hito the t)oundary

('on(iitions in|post,l| Oil ,_+.or ililO th(, (,(lulilion_ for

i'iffi(I-llo(I S dispht('tqnenls
( Olislth,l, for t,iiilili)h, , li iiliiforlit t)cani tlxed at

()tit, Ollti lilld given a varhlt)h, di._iilii('t'nlt,nt at the

olht,r, such thitl its diff(,l'i, nliitl (,<tualion lind

t)Olliithti'3 ('ondiliOli.,4 art,

TiC1,v)----g(r)

The so-ution would be assumed in the form of

equation (10) but with _,=0 since there is no

rigid-body translational frcc<lom in this casc. The
static portion of the sohition would t)c determined

to satisfy
F/' (_,r)=i7(_:)

alld

_+(0,r)--'_+' (0,r) _,/'(1 ,r) =0

5Z(1,T)-:/(,)

while the expansion fun(.t ions _+ (whet(, i-- 1,2, ...)
ar(, the solut.ions of

arid

F,(O)--F+'(O)--TJ,"(I)=F,(1)--O

(the mtural modes of it (,lamp(,d-pinnt,<l beatn).

hi or([('r to complete the solution, the generalized

coordinates (,orrespon(ling to a t)eitnl initially at
rest ll.il(l unstressed would have the usual form

I',(r)+k_m,. jl rl,+(O) sinlc'(z-O)dO

(i 1 ') .)

\VBOI'(_

1J 't

,l 1j,_,= _/e(_)d_= ,V:, z _,'(1)_<"'(1)
0

Siini}arly, a tlnifornl fri,e-frce t)t,llin with a Sl)e(+i-
fled tin o-dop(,ndent dispht('(,nii,nl .q(r) ill ils i'(,lilt, t'

nlovi,s tc<'ording to

F(o,,-) --s/CT)

F' (0,T)--F"(1,T)--F'"(1 ,,)-0

In this <_as(,
F,(_): ,s(_)

and _+((,r) is (h, tetunin(,d froin

alld

F(0,,) :F'(0,,) y"(l,,)=0

-- -- # -- ##!/,_(_),r)=y._ ((),r)=y., it,r) F._'"(1,r)-+(t

w]lih' liu! natural modes _,. (whel't, i= I , -,') . . .)
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Quantity

_(_,r)

i=l

i=l

+,(T) P,(,)+ k, f, l'_(O) sin #,(r--O dO
! IYt i 17_i o

£'1 7_(_,v)._,(5) d_ (i=l, 2, .)
l'_ ( r _'_2 ' " "

f'_o 7/,(_ T)4_ (i o)
o

1 [7_-_,_(()).._,2(1)] (i=l '>, . .)
m i

/l ,_) ,_o2 (/=0)

1 "_(_,r)d_(dr):

j:_ .,I--7,(,¢,r) _(_,r),t_+ 1' 1,7, (,¢--1)[ _(_,r)<l_
./0

TABLE I.--I{ESPONSE OF A UNIFOI{M I+ILEMlgNTAI{Y BEAM TO A GENERAI, LOAD

(a) Symm(,tric_l free-free beam with a eoncent,rate(t mass

Amtl3,ti(,al expr(,ssion ..........

i=0

i,.(_

r

L

- (<,,, _,,_-<,,,,/.-:_+,.,,.,h,_-,_-,.,,,,_.,_]
--'*_,ti;;_ (si,,_E,.+si,,h,E_)((,,)s,/,'_ + ,,osh,_,;) \ sin x_:i + sinh ' " " ..... "- _at, ,,os _ a-,+,v,,,h _a., ]J

('t:_ --<'osh +/t> cos _ k_,('os _ _'_ ('osh _ A',.,_

- (s_,,,_,,_+*_,,",_"_ '"'.",_:_+,.,,.,h,_-,+_]
'"_ ' (si,,x_-,--si,,hx/l,;)((',)sx,4", -_ ,.oshx/_,,) \ sin x/c,H si,,h ,/.', <'os-_ _,," ,.,)sh ,/_', ]J" '2 _/,:_

r

<,_,=/,.o,h,z:,si,,, ],:::_+,.o,,k; sinh-_k,_
L

+., ,a.;(s_,,,,i7+<,,h,a-;)f,.,,_,/:;+,.o_h,g) ('""_, a:,_+,.,,._h,E_+.4,,, a_,_-<,,h,a:;_]
: \ sin _:_+..i,,h _',7 ,,,,.__#,+,,,,._h _Z._/J

Fr(,(lt](,n('y (,(Itml iota:

cos x ,_:sinh _ t',sin xi: ('osh x t:-]- 7,, x/<: (1 -_ ('OS X/_" ('OStl _ 1,') :::0

¢1( i,,, 0-._.., 51) -- '2
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TAttLEI.---I{ESPONSEOFA UNIFORMELI'_'MENTARYBEAMT() A (iENERAL1X)AI)--(_onlimu,(t

(b) Cantilever beam

Quantity Analytical (,xpression

i=l

M (L _)

_i'

i

.--1

_, (r)

P,(r)

7//

_, (_, ,-)

M_ (_, _)

.i
i

m

1"(5 ")

Y,(f)

,11_(_)

i

m

1", (_)

i=l

i=l

--P*m(r),+k_m,Ji _t'*(0) sin k,(r--O)dO

1 £l_fk,2 q v(,r) y, (() d(

Ji'Ji,'Ji' ,

......... l

\ sin,A'_÷sil,h ,_ eos_'_÷c'oS[l x'/c_ /

sin x"kT_-?d,,h (.os-_k,_÷(.osh xE_

tt2 COS,'"E_-}-"OS|I, _ Sill, E,_--SilI]I ,'"E_

( sin,'k,+si,,h , :c, eos,k,+(,osh-_k, )( 'k,: --_ - ::= + ...... >

Frequen(,y equat, mn:

1+('os (,osh x'k=()



ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS 9

TABLF I.--llESPONSF" OF A UNIFORM ELEMENTARY BEAM TO A GENERAL LOAI)--Conclu(h'd

(c) Simply supported beam

Qtmntity

_(6r)

m

M(_,,

V(6T)

____ em(rl ....

P_ (_)

l\tS,_)

Amflyti('al expr(,ssion

cc

_(6_) +22 ,_,(_) sin i_
i=I

M_ (8 _) Jr if', i_r2+_(_) sin i_
i=1

i=l

" r
--21',(r)+2i2r 2 1"_(0) sin i2r2(r--O)dO

[)

1j.,i4-4 ,, _7(_,_)sin ir_d8
I

are th(, mo(h,s of a c,mtilever t)(,am. Or if, instead

of _(0,r)--g(r), there is given the for('(, boundary

condition ff"'(O,r)--h(r), the rigid-t)ody motion
is determined fi'om

_,(r) Ji' _(_,r)d_--h(r)

Ttw static solution ff_ is tak(,n to satisfy

ff_(0,r) = _,_.'(0,r) =_J' (1 ,r) ffS"(l,r)=0

and the modes if, (where ;=0, 1, 2, . . .) are the

natural mo(les of a free-free beam. In this case,

it can be shown by integrating the (liffer(mtial

(,quation governing _,. that Tt._'"(O,r)--h(r).

Thus, the treatm(,nt of t)rol)hmls with time-

d(q)cn(lent boundary ('onditions involves no spe-

cial separate procedure when the Williams' method
is used.

T_MOSnENKO'SB_:AMTHEORY

Basic equations.- In the elementary beam

th(,ory, deflection occurs only t)y virtue of the
rotation of lhe beam elenwnts an(I only their

translational imwtia is laken into account. The

Timoshenko beam theory (ref. 9) permits a(l(ti-
tional deflection due to h'ansverse shear and



10 TECHNICAL REPORT R--2I 'NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

accounts also for the rotational inertia of tile beam

elenlents. Ac(,ording to this theory, the motion
of a I)eant subjeete(I to all applied load of intensity
q(x,t) is governed by the equations (see, for ex-
ample, ref. 6):

_ EA+G(_-q])] -m a'y-_t_= _ q (27)ax

where _ is the rotation of the cross section (see
fig. 1), r is the radius of gyration of the cross set,-
t ion, and A+G is the stiffness in transverse shear.

The efl'ective shear-carryitlg area A_ tlifl'ers from
the total area because tile shear stress is not ('on-

stant over the cross section. The bending mo-
inent J[ and transverse shear force l+ are given by

Symmetrical free-free beam with concentrated
mass. :-For the application of Timoshenko's
theory to the symmetrical motion of a uniform
free-free beam with a mass 2_ a t_the center _=0,
attention will again be restricted to the I)ortion
0_-<_=<1. As in the case of tim elementary theory,
the effect of the mass may be introduced imo the
differential equations if desired. I]owever, for
illustrative purposes, the differential equations
(30) will be left un('hanged and the mass will I)e
introdt_(:ed in the boundary (,onditions; the
boun(h/ry (,otl(litions then become

_C0:) =0 }

_'(l,T)=0

_' C1,_)-_C1,+')= 0 (:_:0

_+/+ll(l

M=-e: a_ (%)
Ox

For unifovnl heanls, these equations may be
writtetl in the dimensionless forms

_,,+ 1 (_t,__b)_k, at2_,,= 0 ]
]G 2

'-¢,)'-?):-_ (:_o)

M= - _' (:_t )

p:: t, (_,_,/,) (:_2)

• l �El
where the transverse shear ('oellleient k,:i-_T/;
is a xneasure of the freedom of the beam to (Mh,(-t

through transverse shearing at'lion and the rotary

inertia (.oettivient /_'_t _ is a meamH'e of the rota-

tional inet'ti_++ l)er unit letlgth.

Note that the ftm('tions _ and _ a.re l)oth net't,s-
sary Pot' a<h,tlUate definition of th(, (h,formal ion of
the I)eam. Sin(!e these go hand-in-ha.tl(t, the terms
"solution" and "response," as used herein, will
al)I)ly to these ftmetions collet'tively anti the single
notation _(_,r);_(_,r) will be used lo specify both
ftm<'t ion:.

Not.( that the location of the ('oneentt'aled mass

at +-- 0 and t he restriction to symmetrical motion
ex(dud( any effe(,t of the rotatiomfi inertia of the
concen rated mass.

The beam is assumed initially at rest and un<h,-

fleete(1 hence,

Y(_,0)=0 1

(_,0): 0

,k(_,0)=0 /
_(_ t))=0.j

(34)

With tile protllem thus ('Oml)letely defined t)y the
differe_ t ial equations (e(ts. (30)), the I)out_dary
eon<titi, ms (e(ls. (33)), and the initial <,ot,lilions
(eqs. (+4)), the solution may lw obtained as
follows

AssU ne that

_(+,+)= _,C+)+_,(+,+) + _++(+)_,(+) _ (:++)

J

where ]_,(r) is again the rigid-body translation of
the 1)e;m_, _,(+,r);G(+,r) is the static solution,
+m(t _+ +);++(+) (where i=0, 1, '2.... ) are the
natural vibratiot_ tno(h,s. The rigid-body tnms-
lation ,.f the I)eam _, is governed again t)y the
<tH[er(,l_tial equation
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and the initial conditions

_,(0)-_,(o)-0 (37)

The static solution is (letermined to satisfy

¢/'+;3 (_/--¢,) =0

and the cantilever boundary conditions

L(0,_)=0 )

_/0,_)=0 _. (39)

_b_i(l'r) =0 /
_ (1,r)--_b/1,r)----O J

The mode shapes _(_); _b_(_) satisfy

+ (_l,'--g'_)'-C-kfl_],=O (40/

the boundary conditions

_,(0)=0

_/(1):0

_,'(11-¢,(1)=o

1 } (41)

L-_ 9,' (01= -_k,:_,(0)

and the orthogonality relation

Ji 1 { [1 +'/_ _6(_)]._,(_) ._, (_)

+km_b,(_)_bj(_) }d_=O (i _j) (42)

The derivation of this orthogonality relation is

shown in the appendix along with the solutions
to equations (40) and (411.

Substituting equations (35) into the differential

equations (eqs. (30)) and utilizing equations (38)

and (40) redu(:e the differential equations to

i=0

_,, (_,+ ]c,2¢,)_b, = --"_ (43b)
i =0

Multiplying equation (43a) by [I-V'_.6(_)]_, aml

11

equation (43b) by km2$_, adding the two equations

and integrating the sum over the range 0<_=<1

yield the result

_,+_:fl_b,-- i_*(r) (i----0, 1,2, . . .) (44)
?l'l

which takes into account the orthogonality rela-

tion (eq. (42)). The generalized mass and general-

ized load appearing in equation (44) arc

m _= f0' { [1+ _fl (_)]_,2+ km"4,_") d_

_tLll(l

I',(_)--J:l([l+=mfl(_)]=y,_l,+lcm'#,)d_

respectively.

By a similar process the initial conditions (eqs.

(34)) become

4_,(0) = -P' (0__) (i=0, 1 2, . . .) 1
m, ' (45)

$,(0)-- P,(O) (i=O, 1 2, . .)
m_ ' '

It is shown in the appendix that the generalized

masses m_ of the given free-free beanl can be

ewfluated for i=1, 2, . . . as follows:

¢,(1)[6 , _ (i=1,2, ..) (46a)

The remaining generalized mass m0 reduces, as in

the elementary theory, to

m0= (1 + "_,)._o _ (46b)

since the symmetric rigid-body mode has no
rotational component _b0. Further, the geueral-

ized force l',(r) for i--_ 1, 2, . . . may be reduced,

by a process of substitution from e(tuations (38)
and (40) and integration by t)arts, to

15P,(r)=/c_ ._(()_(Lrtd( (i=1,2, . . .) (47a)

and the rigid-body generalized force Po is

Po (r) = yoyj Y._((, r) d( (47b)

()n the basis of the a._sumed form of ttw solution

expressed in equations (35), the problem of deter-

mining W(L_') ; _P(_,_) has been ret)laced by a nulnber
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of ('onlpont, nt probhqns requiring (h, ternfination

of the fun('tion,'; ._,(r), Y¢5 r);_,(£,r), 4'iCr), and

_,(_!;_b,(_). The solutions of these (.olnponenl,

1)robh,ms must now lie obttdned.

For .7t/r), integration of equation (36) in con-

julwthm wilh eqm_tions (37) yMds

,L0-) - l +_,.)0 ,.'00,) 7/(,_ r),/_ (,1,-)" (4St

For ',_'sC,r);_b_(_,r), substituting _, froth equation

(36) into equations (38) and iniegl'ating, it) con-

jtm(;tic4l with the boundary ('on(litions (eqs. (39)),

gives

(-',9)

Since equations (44) an(l (45) are identi('al to

equalions (lit) and (20) of the (,lenwntary solu-
tiou, th(, gt,nt, t'alized ('ooMinates 6_(T) are again

given t)v equation (26). Tit(, solulion of equations

(40) for tit(, mtltal'al modes Yi(_);_t(_) is given in

the al)l)endix.

Th(' solution just ol)tain(,d and ('orrt,sI)on(lin_z
solutions for ('antilever and silnply sui)t)ort(,(l
beams are summarized in tabh, It.

TWO NUMERICAl, METHODS OF SOLUTION

TRAVELING-WAVE METHOD

A travt,iing-wav(, nwtho(| for (.ah.ulating the

r(,sl)Olt,'-;e of It strll(qllre to tI'ansh,nt loads (qm lit,

devised only if th(, motion of the sirll(qtu'e is

goverm,(| by dilf(,rentiM equations of the hyper-

bt)li(' tyl)e. Tit(, simph,s! beam th(,orv which

conq)|ett'ly fulfills this requirenwnt is Tim((-

shenko's th(,ory, which in(.|ud(,s th(, cfft,c(s of both
transverse shear and rotary inertia.

In devt,loping a tr_v¢(,ling-wav(, int, thod of sol(t-
(ion, it is (.onvenient 1o first replat'e the Timo-

s|wnko partial (tifferential e(tuations (('(t s. (27))

with th(' following fore" equivah'nt ortlitmry

([ifferential equations written along four ('hara(.-
l(,ristic lines I+, I--,

x, t plane:

Along I+ where dr_ 1
d J" Ct"

, , ,dr l
Along I-- wmr( _=--_:

ll+, mid 11-- in the

1
d _1I+ m rht _ -- I "dt -- 0

C1

_50a)

l&ll--mr_d_t+ l'51t 0
C1

(50b)

dt 1
Along | l + where _=_i:

1 dI"
¢2

--mdv--(mc=,C2+q)dt 0 (50(9

dl 1 1
-- . dV

Along l 1-- wht,r(' ds" c2 c2

+zndv4- (mc,A_--q)dt=0 (50(t)

'Fit(' (h,riva(ion of equations (50) is givt,n in refer-

mw(' 6 The (h'l)('nth'nt, varial)h,s are th(' inoln(,llt

M th( shear i" anti Ill(' lint,ar an(1 angular velot.i-

//,.v
b!l b_ The quantities c_ "_/mr:lies _, _ and II Ot"

_ /,'1,, (l
and e2--_-m- arc (|le l)rol)agation veh)cities of

(lisc(m imfilies in inomenl and shear, resp(,(.tivt,ly

(i)has(, vt,lo('ilit,s of (listurbant'(,s with infinitesimal

wavel'ngth). In each equation, the total (lifter-

(,alMs Sl)(,t'ify inlinitesimal (lilf(,r(,m'('s in th(:

(h,sign L(e(| ('ha.rtwtt'ris(ic dir(,t'tion.

For any given lit,am th(' slolt('s of tlt(, ('hat,w=
t(,risti( lint,s art, known; |wn('(', ('los(,ly spa('(,([

n(,two_ ks of charat'tt,risti(' lines may I)(' (h'awn in

tim st)w('-tiln(' plant'. Various st,h(,mt,s for tht:

a ppro.,, imal e s( (,p-by-step inl egral ion of equalions

(50) ()_ ('r su('h networks art, possible, in gen(,ral,

all i'o,{uire some forIn of inlt,rpolation sin('('

Titnos) wnko's etluations hart' (wo characltwisti( t

hi,is. (Th(, l)artit'ular case wher(, the two nets
('oinci( c. c_=c2, has l)(,(,n treated in (h, tail for

unifor_ t Ite'mls in rcf. 6.) Oat, int(,gration s('heln(,

is I)rit, lly (h,s('rib('(I in this st,t'tion. Att(,nlion is
restri(' (,(| to t), uniform b(_aln for whMI tilt, ('har-

actt, ris,ics are straight lim,s.
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TAI_LE II.--IIESPONSI'_ OF _k UNIFORM TIMOStIENI(O BEAM TO A GENERAL LOAf)

(a) Syinmet.ri(,al fro(,-frc(, |)c_un with a.concentrated mass

Quantity Analyti('al Oxl)r(,ssion

13

i=0

i=1

i=l

i=l

e,(T) /'_(_) + _'' J'"-- l'i(O) sin k,(r--O)dO
1?_i I?? t 0 '

l'i(_)
tb 1

1 7_(_,r)._,(_)d_ (i=1,7,...)
_7i 2 . (I

(i=1,2, . . . )

: O)

(' _. fi_ ('osh o_ cos _,,_
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TABI,E II.--t{ESPONSE OF A UNIF()I{M TIMOSHENKO t3EAM TO A GENF, I{AI_ IA)AI)--Continued

(a) Symmetrical free-free beam with a conc_mtrated mass--('on,'lud(.d

Quantity Analytical expression

(,(/3,_--k,_k,Z'_f ¢3,sin fl_ a,(+sir,h a,

--(B_'--k_'k,') (('osha_+v_('os.,) [A_(('osgq,_--cosha,_)--(sin O,_+"'v, sinhc_,_)]}-m_ (o_?+_?) - _,

sin fl, c_,_+sinh a__(,(_'2 k_k2) 3'_ - _f cosh c_,s tLf-- Ol: i

M, (()

+_ (_'2--k'2k"_) (('°sh a'+7_ ('°s _3 EA, (sin _+a_ sinh a_)+ (('°s _+_'_ c°sh c_)] }(a 2+fl _) _'

(,_i:( "i_i si]' _i si[l'l "i_f-silI" ai _il' _i__,O{i

_(._..) [ ( )( )_1}--m, (_2+/L2) (cosh,_,.+,_,(,os_,) A,: cos ¢_5+l-cosh o_,_ -- sir, ¢_6--_'sinh af6

A i

"Yi

sin fl_--¢_ sinh a,
Ot i

cos fl,+ 1 ,'osh ,_

i

O_ i

/

/_'__lI'II'; L t Its2--/Cze,2) 2-}-L2 j(k._2+ k_, _)+ "_/

Frequency oqualion'

o3' sin Ncosh a+('os ¢ sinh a+N_ a!a_+k_k_)a2+_3_ "+ _--a_) sin fl sinh a+(_+_)cos fl cosh c_]=0
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T.',,I_IJ:, II.--]II';,":,PONSI'] ()F' ./ I;.XIF()I{._[ TI._I()SItENK() I'II_L'tM TO A (;ENI_;]I.',,I, ],()AI)--Cor_liuu,,d

I
i

(_U'l n lil.v

.7/(},T)

.11 (},r)

I'(}.T,

l >,(_)

.TL<(&_)

.IL (5 T)

I "<(_7T)

.11 (})

A.

I

i
eli i

i

l

i
I

|?r(,qu(,ncy oqunl ion:
I

.,+(;b._,,,,._,,,,,o+0+_),.,,__<.,,_,,o--,, J
5o292:1 59-- 3
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II. l¢l':St'(}XSl", ()I: .\ ['NI]"()It.M TIMOSIII:,Nh:O I'lt':AII T() A (H':XEII.\I, IA)AI) (!ul_*'ludcd

((') Simply supl:.u'l(,d I..am

Qtmnlity

._(CT/

:/(_,rl

I "(,C,r)

_:(rt

]_,(r)

tit ,,

.1l,/,C,r!

I" I_,rl

Amdylical ( xpression

._,_(E,v)4-_.= ([_,(r)],- =,, +. _,(r)]j:=b, ,)sinir5

f"/ k/-'. 2"_ k / b /2",_ };,_(,_,T)+_:_-,=,1!,., :+, )I,,<T)I,:,+(_,, :,,: : ,,(T)I,,:,, ,.,,_:_-_

)"i"=.(gr) 4- 1 _l,-[_,(T) ]_.:C,,Tb, [,_,(r)].,=,, vos ir_
i= I /'lr

I_t t I}_ t • n

l j "1k, 2 7i(g_t4n ir_ _1_
o

,j --;2_,.: j

 iii il

'_ *_ '_ t '_ t', _ l'_ /'_ _ _2 1 "_ "__

.:o .:. .:o .:_. ' " .2 t/J_ J.

_7(_,_) (,t_) _ + _(_,_,) (,/_)-'
• [)

Frcqu(,n('y _,(lm_lions:
,_'_ (I, or b, Wtlt'l'('

b, k,.]¢n,_/11 ( 14 /.,r e(k, e 'h:_. _)-[ x[i 4- _+:_r_(A+.+__kR/_)] 2L 4]G_/:R1_i_rc; }
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The beam is divided arbitrarily ittt,) segm(,uts
.X.,: (:c(, fig. 2), and the lint(' interval is takcu

l
ac('or(liug it) At=-- A.r. This Sl)e<'ifit,s a. latti('e ,)f

Cl

points in the spa('e-time i)lanc at the itltersc<'li<in
,)f the 1-- a ud l-- ,'luu'a('tcristi,_ lines. Consider

a general point 1 (fig'. 2) from whi(+h ('ha.ra_'ter-
isti(.s of both families hay(, been drawu })lit(.]g.v.;til'(]s

in time. Tlw II-+ and 1I - lira's Ira','(' st(_cp,'r

slopes (sit,(',' c2_c0 a,n(l termimLt(, tit points 2'

and 4'. "Fhcn llw ,lift',went,,Is in ('quali<)ns (50)
may I)c r('phw(',l I)v tit(' a.ppr(,priatc finitt' difl'cr-

,,nu,,s ati<l the following ,',lulllious lit'(' ot)tain,,(l:

AI
-!-(,11, M2)- mr"((..)_--_22)--,) (l',_l'.,) 0 (Sit)

1 'k/

(,11 --'_/L) 1111+2(("_. ('24)_--'[) (|+_-+ I"4) 0 (51ti)
U I

1
(I',-- I',2,) m0'_--v.:,)

C2

(q,i

l
- (I'_ l'_,)-F m(v_-v_,)

("2

(51e)

t me,: '2 (!2,q !_4,) 2 (q_ q4') 0,1 (51d)

It is a_sume<l lima M, 1", v, lu_d (..>art, kuown

;+,l l)oinls 2, 3, and 4. Plu'll, I)oli(' inttwpolalion

formub_s are sulistitutt,<l imo e(luation_ (51c) till({

(51d) lo _ziv(' the ,tmlnlities a,t points 2' lt.n(I 4'

iu terms of tlwir vahl_,s _,t points 2, 3, and 4.

Then e(tm_lious (51) lic('ome four c(luati,ms for
the fore' m,l,:nown quantities +ll_, 1"_, r_, and _:h

in terms of known values of M, I', r, and (.2 at

each(if the hl, lti<'e points 2, 3, and 4. These may
1)(, solved to ol)tain II.ma, trix r(,,.urren,.(, formula;

however, a simt)lifica.t ion may 1),, ittt ,'o(hwed t,as,,,l

on the fiu't thai ,luantitics at points 2 and 4 have

alrea,(ty bcettdetermint,d to satisfy lh('. f, dh)winlz

l'etqll't'otwe fOl',llltJli

u, 1,5+
+'1-= 1Jh'" l't+l i-++t+lA:']

[ 7 7+

23 + i_.4 - ;+,

i=:, +lAd _+ +l.t.-,l P,+
+ [ql 7/,

ti54)
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[____0_, . . /m _ O_ , /m'_
wh(,l.( _ the quantities have t)eell ill_l(le (linwnsionIess

Or _)J2_/fiand r--b_=:r,_,:i_;]_ aml wh,,r(,

[-|_}

2 K'_c(') c"K c,_ K -

1 [ -t c"u\ C,,

- . ('1

f_/;ink (1-_-K 2
_CI

¢..2 C2 2 1

('12 ('12 _RI

i,*./2

[.1:_]=(1 c/] ]
--K'-' c_ N 0

C2

I%
.... K 1 0

CI

0 0 ItK _

1

('1 ] (*1 ('1 _RI

• (%2" (!2 C2 2.: _.1
• (712 ('l 2 ]_RI

--c_kmK(1-_-K 2) k_; 1_1,72) c/: (l+l_ "2)
('1 ('12 --

[.1_]

-- 1 0 K 0l
C2 J-: N 0

('z

0 0 0

I

[(:1 =!

1
() ,5 kinK'2 0 1) kn;K:

1 c, I c,
0 -,)k_;-:K 0 6/;n'=N

- CI - ('1

_. l) (] ((]'i 2) " ]_R12]k "(l_ 1_'2) 1 C.,i'/¢/? CI N(1 t K:) , kn;2 "'2 K(1 +/42) 2 6 ,_. 2 .: K(1 g-K 2)
1"2 -- ('l 1'1

I c,, AtK
km 2 c, '2

_+ot(' that the ntore al)l)rol)riate paralnet.er c_ (_ k.,._ lilts b(,,.n itsc([ here instetLd of k,.
C2 \ /cut/

The response of a beam may now be obtained by the repeated application of equation (54) except thai,

as is indicated in figure '2, special formulas which take into a,:('ount the particuh_r bmm(hLry and inilial
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conditions of the l)robh'nl, must be derived for

boundary and inilM points. Ill addition, it must
be r(mwmb(,red that tim vharact(,risfic lines are

possible loci of dis(,oniimtities in the dependent
variables or their derivatives. (See, for (,xaml)h'

ref. 6.) Such (lis(,ontimfiiies x_:ill arise, fro.

example if there are ('oncen tratcd loads (or imposed

velocities) that have histori(,s which arc discon-
timmus or have discontinuous derivatives. Dis-

continuities in AI or _ are propagated with velo('-

ity cl (the locus of such a (liscontinuity is shown
by the dashed characteristic lines in fig. 2) ; discon-

tinuities in V and v prot)agate with velocity c2.

The nlagnitudes of discontinuities may be prcde-

terlnined through the application of equations (50)
in a manner which is illustrated in referen('e 6.

Tlnls, ill general, discontinuities may tie added its

they are encountered in the step-by-step solution.
In the schenm which led to cquation (54), it will

be noted (fig. 2) that special consideration is

necessary for points just above thc lo('us of a dis-

contimfity. Special formulas are certainly re-

quired where there is a jump in one of the functions
and it may be (h, sirabh, to account also for dis-
continuous first derivat.ives.

Once 12_ I--;, and 7 have been determined at a

t)oinl, :l-I may 1)(, obtain(,d at that point by in-

tegrating equation (50a) or equation (501)) along
the 1)roller (,hara(.terisli(, from some boundary
where ill is known.

It shouhl b(, nwntiont,d that the seh,ction of the

I_ and I-- lines as the basic n(,twork is based on

(rather intuitive) (.onsiderations of the stability
of lhe numerical procedure with regard to propa-

gation of errors. (See ref. 12.) it is assumed that
the domain (if (h,p(,nden('c imliosed liva num(,rical

l)rocedure shouhl at, least encompass tim totql
th(,oreti('M (lomain of (h,t)en(h'n('('. This wouhl

nol tie the case if the steeper II-- and II-- ('har-

a(qeristi(' lines XVOl'(,utilized as a I)asic grid.

HOUBOLT'S METHOD

A caniih, ver beam at'led upon by a series of

(.on('entrated loads lq, Pc, • • • P,,, is shown in tit(,

following sk(,tcil.

Pl P2 P5 Pn

I I

J ; 1 1 1L
0 I 2 5 o

Station

Such a b(,am has the deflection

17/¢[- [6"111'[ (55)

where the subscript c is used here t,o indicate that
the deflections arc (mn tih, ver deflections measured

with respect to station 0 and where [a] is a nmtrix
of stiffness influence ('o(,fllvients. The invm'se

equation is

lpl = [al-'[yct (56)

The (hqlections of a free-fl'ec beam may lie (,x-

presse(l in terms of the eantihwer influence coetli-

eients [O]. For the free-free beam the symmetric

deflection is y=yofi-y_ where go is the det]ection at,
station zero (the center of the free-free beam);

bent'e, equation (56) becomes

vo[Cl-' (57)

But, on the free-free beam, there is the additional

load p0. From the condition of overall equilibrium,

Po is given bv

11

p0=--_l,,=--[t 1... l][G]-'l!¢i
i=1

÷yo[1 1 . . . l][C]-' (58)

and equations (57) and (58) may tie combined
into a single matrix equation for tit(, loads at sta-

lions 0 to n of a free-free beanl. This e(tuation

may Im written

lpl= [;|]lyl (59)

V,/] l (q'( _

l
lbl =-[a]-' '

[bl=--ll 1... ll[O]-*
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a=[1 ... t j[a] ,+.

W|IOI'(_

I{'l=[l-qlml

,ttt,l wh(,r(, th(, vt,('tors !Pl att,l !?ii _t<)w ,,(,_tai_ p(>

_ltt(I !/0 tt, rms, rt,sp(,<'tiv(dy.

('onsi<t(,r th(, sNmnl,'tri(' motioll of tl fr(,(,-fr(,(,
I)t+_lm .,.+l,bj(+('l(,d to the al)pli('(l (listril)uted load

q(,r,t). Tht+ (,<lui'+'_lh,nt ('otl(.(,ttlratt+(l lo_(Is at th(+

stttliot_s 0, l, . . . p+at'(,, _lt +tn3" lime,

Ip[=ll+'l(Iq]-lmliyl ((i(f

wh(,r(, [m] is tit(, diagonal mtlss matrix, and [W] is

th(, wt, ightittg matrix (rt, f. 1;+):

Thus, ht, lIoul)oh m(,tho(t simttlt'lttt,ottslv <](,((,r-

mines ;Ill th(, (h, fl(,(,tions y(x+,tj) (wh(,r(, /=0, 1,

+.. ,p in tt, rms of th(, (Io[t(,('tiotls y(x,tj__),
I](x+,tj :.), atld y(+e+,t_ +<). A (.on(.otltr£+l<,d h)ad

2f(l) ,_:tl tit(, ('(,tlt(,r of th(, frt,o-fr(,(, 1)(,am may I)(,

itt(.ltz(h,(l itl (,(ttlatiou ((;2) |)v _ld(lit_g lo th(, right-
hand si(le the t(,rm

.f:i(l[ (1_:'_)

wh(+t'( +

7 6 -- l

'2 20 2

'2 20

Z,l:
Iw] 24

2 20 '2

2 20 2

--1 6 7

"l'h(, (,ssetlli_tl ft,tlture of th(, ttoul)olt 1)ro('t,dur('

(t'ef. S) is the method of t,Xl)t'essil+g tit(, s(,('o_+(I limt,

<h,rivaliv(, _. The aect,lt,ratiot_ at time tj j5t is
writ tou _s follows:

1
,+]+j:=<_t),_(:Zlz,,!y_lut+I+4Iy]J 2--iP/iJ :_) ((ill

_ttt(t is ot)t+_itt(,(I 1)y" t)t_ssing tt tltird-dt,grt'o curv(,

through th(, I)oi_tts _xt t=tj, t+ t, t+_+, _nt(l t;_+ t_t

((;1) i_+to (,(ttt++tiot_ (59) (writtt,_ for tim(, l--t_)

tn_d :olvittg for !Is l(,a(ls to the rt,('ttt'r(,n('(, t'(ttt+ttion

luIs[B]l_zb+(_t)= [c](siu!j _-41,q]_-..,+!_l/-:O
(_;'_>)

!'I

loL

TH(, +olutiott of a t)rot)l(,ttt I)v r(,l)t,t_t(,<l t_l)l)li("_-

riot+ ¢)f (+(]tt_tiott (()2) r(,(tttircs th_tl th(+ i_itial ('o_-

(|itiolts of th(+ prol)h,m at tim(+ +'--0 t)(, (,xl)r(,.,.+s(,<l

it_ tct'n s of ti('titious or(linates [y[ _,lyl-+ at lim<,_

t+_ attd t .,. This is n('('om])lish(,d 1).v (+xl)r(,ssing

the tim_+ (l(+riwttiv(,s I#', attd lyl0 it+ tornt_ of a third-

(h, gt'(+o ('ttrvc t)ass('(t throttg]_ points at t--t_, O,
t__, at_(t t_+ tit, (,very sttttion. For th(, ('+ts(, wh(,r(,

th(, 1)o_tt_t is h_itiall.v _l r(,st _t<l th(, _tl)l)li(,d loads
iucr(,as, ('onlinttousl3+ t'ro_n z(,ro iuitial v_lt_(,s, lh(,
iuili_l ( ott(litiotts

I.,']1,,-191,,=1_[,, 0 (_i4)

aro <+'oH_'(,rt(,d by this t)ro('(,ss to

!!/_o= 0 1

'Yl-_-- -',+/+_

?/+-+= _'?/[_j

(li5)

The_, (qua tiot_ (62), applied forj 1, .'+'i_,ht:

lul,= [_] !qt,-T_4>_[('1lu],
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which may be solved for [Yl, to ol)tain

[ 4 [<']]"[1_]lql, (66)=u 111+ iAt)

Tilt, application of equation (62) for ./'--2, 3, . . .
is now straightforward. All that remains is the
delernlination of the cantilever inlluet,'e coeffi-

cients [G].
In this connection it shouhl I)(, pointed out that,

although no reslrictions have I)een made on the
t)eam theory to t)e used, the application of the
method, as formulated, with Timoshenko's theory
requires that the deflections y t)e interl)reted in a
general sense and include also the rotations of the
cross sections ¢,. Thus, with two quantities to be
determined at ea('!l station, the order of the
matrices is 2, and the required computational la-
bor is roughly four times that required wiih the
use of the eh, meutary beam theory. A cOral)tO-
raise which affor(Is increased a('('uracy over the
elementary theory yet avoi(Is this large increase
in computational htl)or, is tt,e use of a theory
which contains transverse shear freedom I)ut no

rolary inerlia. With no associated inerlia hm(I-
ing, the rotations 4, nee(t no! be exl)licilly i,('hlcled
in d., step-by-step dynamic a]mlysis and do not
appear in the recurrence formula, e(lualiou (62).
The ('antilever influence (.oetli(.ienls are (h,ter-

mined as fi>lh)ws on the basis of this |alter theory.

The i.fluence function (Green's fum'tio.)
G(.r;+t) is the solution y of the equations

b •

D.(>41b,r

and the boundary conditions

y(0)=¢,(0) _j_ (I)=_Y(1)--¢_(I)=(, (6S)

However, the de/h,ction may be written as the
sum of bentlin: and sh(,ar cOntl'il)uliolls, I/--Ye@II,_

with _= Oy's, 'rod it is exl)edient to write for the
b.r

influence funct ion

G(z;,,)=G,(z;<)+G_(:r;.r,) (6.O)

vchere G,,_and (:_ are the solutions of the differen-

tial equations (e(luivah'nt, to egs. (67))

b: b2 }

bs2 El b_2 G. _(x--zl)

(7o)
b ,'1,G b G_=--_(x--.rl)

O,r Os'

an(I I)oun(lary conditions (equivah, nt to eqs. (68))

,,,. , bG. .... b2G" (l;al) 1

b -,- b21;,_.
=b,r 1_1 b.: (t;.r_)=O (71)

(;:_(();xO ,bbG,f (l ;.rl ) :0

For given (listril)utions of I)emting and shear still'-
nesses, equations (70) tony I)e integr'_led dire('tly
in c<>njun<'tio, with llw boundary conditions ((,(is.
171)). For a uniform beam lhe resulting lolal
iniluen('c fitnctions are:

G(x;x_)= ! x+ 1 (a:i:_ xa •A_G E1 6) (.r_x_ ]

1 .._ 1 [:x,2x xz:_ _ (72)-- ,,- (x>,r,)-A /; /_:z_ 2 - 6 / J
In dimensionless terms, equati(ms (72)may

writte.

_- (73)

!;) J.... _'' '2 _-- (_b',_O

an(l, for a uniform beam, the recurrence formula,
('<ttmtion 162), bec<>nws

t_!,=[7_l!_],+ i2 [B]L:](<_I:-,-41::I_-_T _:/,,-:O

(174)

where

[7_]=[[-_]-F_/v,2 []V'][I,] -1 [_-'l

I_]=LI_]I_] j
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_=[1 1 ... ll[G] _

!i

l_]=-[1 I . . . I][G]-'

7 6 --I

2 20 2

2 20 2

'2 20 2

'2 21) 2

-- 1 6 7

Tile elements (;u of the matrix of influence co-
efficients |HI are seen to be

__ [2

j2
=k,3jA_+_ (i--_)(A_) 3 (i>j)

where i designates the row and j, the column.

RESULTS AND DISCUSSION

mot)At SOLUTIONS

For illuslrat ire purposes, example computations
have been nmde for the case of _ uniform free-free

beam for whi('h k_u=0.1, k_=().2, and _:().

The I)eam is sut)jeeted to the al)l)lied eon(,entrated
load

wheref(r) has each of the time variations shown in

figure 3 The given values of km and b, are appro-

priate t.) a beam having a solid rectangular ('ross

section :rod a ratio of half-length 1 to depth equal

to 2.8_7. The calculated response has been
liinited to the history of transverse shear at the

1
l)oint _ 2. Moment calculations are omitted

because they do not provide as severe a test, of the
1

analytical methods. The i)oint _ ,_ is chosen

arl)itralily, since the location eorresl)omling to
maxim(.:m transverse shear is not known in

advllnee.

The "esponses to the step an(| ramp-platform

loads _.C:l'(_ obtained on the basis of elementary

theory :--rom table I(a) and on the basis of Timo-

shenko'_ theory from table II(a). In each ease,
six modes were used in the expansions. The

respons,,s to the other three functions (figs. 3(e),

3(d), ard 3(e)) were obtained by superposition of

tim stei) and ramt)-l)latfornt results. The. re-

suiting shear histories arc shown in figures 4, 5,

6, 7, a l d 8 up to a time eorresl)on(ling approxi-
mately to the period of the first natural mode of
vit)rali(:n of the beam.

27t [ -t

i (a) j
o I .2 3 o .I

(b)
.2 .3

7"

71_-_ i (c)

o .I 2
T"

I (el
o .I .2 3

T

('0 Step function. (1)) llamp-platform funelicm.
Ce) Square pulse. (d) Triangular pulse.

I

.3

"r

71 (d)

0 _ .2 3

(e) P,l'tst pulse.

I:T,HTRE3.--Some fundamental load histories.
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Stofic response

I
I
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I

Elementary theory (6 modes)

Timoshenko theory (6 modes)

J
I l I I I I

.8 l.O 1.2

Tile long dashed ('urve in (,ach figure is the

static portion of Ill(, r(,sl)mls(,. Thus, the ]arg(,st

dymmfi(', overshoot factor, a(.hieved by the sic l)

loading (fig. 4), ix _q)proximat(,ly 2.7.
It will t)e m)le:l tim! lh(, blast pulse lea(1 (fig.

3(e)) has only ont,-lmlf as much iml)ulsc as that

contained in the s(imm, and triangular imls(,

loads (figs. 3((')and 3(d)). ]h,n('e, if the responses

to the tim,(, t)uls(' lomts (see figs. 6, 7, and 8) are
to be (,ompar(,(I on tht' basis of ('(tuM input imlmls(, ,

the response to the blast pulse must be doubh,d.

On this basis, lht, blasl lmlse is seen to cruise the
1

hight, st shear stress at _= '2"

An in(li('atiot_ of th(, conv(,rg<m(+e of the modal

r(,sults in figm'(,s 4 to 8 is l)rovided 1)y the lmr

graphs in figure 9. ()n ea('h graph, the h(,ightsof
the bars (,orr(,spond to the magnitude of the stall(,

portion of the response (zero fr(,(luen('y) and to

the amplitu(h,s of the terms in lhe series e×pansion

for the dynamic portion. (For each load, r ix

sufficiently large so |hat the l(md fun(qion has

attained its constant value.) The bars, thus,

represent, the maximum possible contribution of
each term to tim total. Note thai, for lhe loads

of long dtu'_ltion (the step and ramt)-l)latform
fun(,tions), lh_, sl_di(' t)art and the first term con-

t ribut(, a 1)roportiomlt(4y large strut(, of th(, r(,-

sponse m_d suftlci_,nt aceura('y could I)e ot)t_fined

with only three modes. ()n th(, oth(,r hand, the
adv(,rse eff(wl of redu('ing the load duration is

illustrat(,d I)v the bar graphs for the resl)onses to

to lhe three pulse loads. In each case, no ('on-

v(,rgenc(' is at)l)arent for the first few modes _lnd,

in the' cases of lhe squat(, and l)h_s! pulses, th(,re

is some doubt as to the a(h,(lua('v of tim (wen six

modes, parti(_uhtrl 3- wil h the use of t he elementary

theory.
Further eviden('e of the efre('t of load duration

on conv(,rgen('e m,t in addition, _m in(lica.tion of

the effect of load distribution are given by the

following cases of the rest)ons(' of a uniform simply

supported t)(,am lo various lo_(|s:
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7

.5

0

Elementary theory (6 modes)

Timoshenko theory (6 modes)

Traveling-wove method (6 stations)

Houbolt method (6 stations)

,,X
Static response-., / /.// \ \\

/---:,.,, ,..,
/ 1/7;," , , X

/ %,
/ \

I I I I I I
0 .2 .4 .6 .8 1.0 1.2

T

FIGURE 5. Sh,",r response _(12,r ) ofa Ulliforlll free-free })pall, to a r'.mlp-platform load ('Olle(_lltr,ite([ ,it _=0.

Ca.-e (1): For a uniformly (listril)uted step load
7/(¢ _- I(,),

M(&T) - :_--,)-_._ i3 sin ;_ cos ;_-_-_
-- _ i=1,3 ....

-- 1 4 _, 1 i2.x%. 2l'(t/,T) =-_/+ 2 _-_ _ cos i_-_ cos
i=1.3 ....

('as(, (2)- For a step load concentrated at the

center _(_,r) = 6 (t/--_) l(r),

i--I

.... _ sin i_,_cos i:Tr:_-71"2 i=1,3 ....

1 "_ 1

i-t

-- _ cos i_r_eos i2,r2r
7'/" i=l.3 .... Z

(,as(, (3): For a uniformly distributed iml)ulse
loa(I _(_ r)--a(r),

l'7(_,r) =4- _ l7ri= ,' .... i sin i_r_sin i2rdr

P(_,r) =4 _2, cos i_-( sin P_r2r
i=1,3 ....

Case (4): For an impulse load concentrated at

the ,'e,i, er "O(_,r)=6 (_--l) 6(r),,.

i--I

3-] $,r)=2 _] (--1) _- sin iTr_sin i2_r2r
i=1,3 ....

i--I

P((,r) 2_r _ (--1) _ i ('os 'i_r_ sin i_r_r
i=1,3, . . .

These results are based on elenwnlary I)eam theory.
(The la,_t two cases are simt)ly time derivatives of
the first two cases.) The effect of load duration is

illustrated bv eomparing cases (l) and (3) (or



ON SOLUTIONS FOR THE Tt'tANSIENT RESPONSE OF BEAMS 25

[.0--

.5

0

--.5

,.- Static response

r / !_

/
.j',/ I

I !

/'1

r,i

" ; " ,"(/

Elementary theory (6 modes)
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FI(;URF_ (3.-_|l(,lir r('s|)OllSO _"=(l_T)of _i tlniforln fr(_'e-fre(_ b(_klll '[o IL S(llll:tr(_ ]_)ll]s( _ ]()lid ('Oll(_(qJtr_il('d ;Lt, ,_:=().

cases (2) anti (4)). Changing from a h)ad of
infinite duration (the step load) to a load of zero

duration (the impulse) intro(hwes a factor i_ and,

hence, reduces the rate of convergen('e (anti, in

fact, produces divergent series in 1)oth case (3)

and ease (4)). ,";imilarly, the effect of spatial

distribution may be seen I)y comparing eases (l)

and (2) (or cases (3) and (4)). Changing from a
distributed to a concentraic(l loa(I introduces a

factor i and hence reduces t he rate of ('onvergen('e.

The apparent clmngc in the sign of half the terms
is not significant since each series is essentially an

irregularly alternating series (ex('epl at certain

specific combinations of _ and z).

THE NEED FOR TIMOSHENKO'S THEORY

The question of which theory shouhl be use(I to
determine the response of a I)eam to a transient

load is intimately related to the convergence of

the result. This is because the secondary effects

of transverse shear and rotary inertia become

increasingly important for the higher modes.

Not(, in figure 9, for examph,, the growing (lisp_u'ity

between the natural frequencies of a uniform free-

free beam cah,ulated on the 1)asis of the elementary
and Timoshenko theories. Thus, if it, is deter-

mined that, for a given beam subjeete(l to a certain

loa(I, modes strongly aff(,ete(I I)y transverse shear

and rotary inertia contribute a large share of the

response, it, is unlikely tha, t elementary theory will

yiehl correct results. In case the given beam is
a comt)lieate(l nonuniform structure, a rational

pro('edure for determining the proper theory wouhl

|)c to consider a uniform approximation to the

given beam, quickly obtain the response of the

uniform beam to the given load by elementary

theory (tabh, I) and investigate the convergence of
the response, and at, the same time to consider the

influence of rotary inertia and tra, nsverse shear on

the modes (as manifested by the (lifferenees in

natural frequencies obtained with the elementary
and Timoshenko theories).

This reasoning is generally, though not, (.onelu-

sively, confirmed by the results in figures 4 to 9.
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Elementary theory (6 modes)

Timoshenko theory (6 modes)
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_';(.'.,v'_ (,fa Hllifol'm free-free ')tqtllI |O % ,rianglllar pulse load COllCelltr'ttl'd ,tt. 4: 0.Shear resl)on_c
\,: !

[_I[; I'tIE 7.

Only the first m(>de of the frce=fl'ee beam shows
good _tgreement between the fre(tuen(des _,s given

by the elementary and Timoshenko theories. (,Nee

fig. 9.) Thus, the resl)onses to the step and ramp-

plalfortn h>ads (_'s.-. 4 and 5), which (h'l)end

heavily on the tirst mode _tn(l the stalk, contribu-

lion, also show goo(I, agreement between the two
theories. The responses to the pulse loads (figs.

6, 7, and S), ol)lained _ith the two difl'erent
lheovies, bear little or no rese,nl)hm('e to each other

since they (lel)eml heavily on the higher modes.

lh)wever, except for the r(,sl)ons(, to the S(ltmre

pulse h)ad ([ig. 6), the two theories do yield _d)oul

the same peal( stress. (It is felt |hal, Ihe positive

peak nchieved in the first lmlf period stmuhl t)e

given more weight lhan lhe negative peak achieved
later, since the lath,r wouht he ('(msiderat)ly (li-

minishe(t I)y umterial (hlml)ing which has not been

in('htde(I in (his analysis.)

l?,oun(h_ry conditions also inlluen(.e th(, need for

a more relined theory. For examl)le, although the

elemenlary theory is ade(tuale for obl_fini,lg the

shear( ue to a step loa(l on the free-free beam of

figure 4, it cannot t)e used 1o ot)tnin the shear at
the <'eT ter of the same beam where the inl>m is a

l)rescri )ed "step-velocity" of the point _--0 (the

so=('alhd prol)h,m of lhe "instantaneous arrest of

the ro(,l of a moving cantilever beam"). In the

latter ,:ase, elementary theory yiehls a divergent,

series ('ef. 14), whereas Timoshenko's theory yiehls

_ mo&l sohtli(m which converges to finile vnlm,s
(,'ef. 6).

NUMERICAL SOI,IITIONS

The two numerical procedures, the traveling-
waw, lncthod and llouboll's method, have also

been i:se([ to calculate the lr_msi(,nt response of

lhe uneform free--free beam considered in the 1)re-

vious ,,e('lions lo an al)plied raml).i)lalform h)a(I.

In lhe <.ah.ulations I)y both l)ro<'e(lures, the beam

was divi(led into six scgmenl,s (A_ t).l(iliT). Re-

suits are shown in figure 5.



ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS +07

1.0

V

Static response

.5 t_

i\

° y, U
",..I

-.5

V

I I I

-I0 .2 .4 6

7+

I:mVR)': g. HIw,u. re_pot,s(.T'(_,z) of',utfifl),',,tfre('-fr('('t,,"u,,

Elemenlary theory (6 modes)

Timoshenko theory (6 modes)

I I

,. A
n If', ;',11

l l'f"x :n l l ,

J

'/U

I I I
.8 1.0 1.2

to "( hlust I)UI:-(' load conc(mlruh,(l ;it _ O.

For the traveling-w'lv(, met]lotl, the lime inter-
va,l is

-kT- - _'RtA_ -- 0.01 (i(i7

Relatively sintl)h, boun(hlry formtda,'+ (b_ts(,(l on

linear interl)ola, liot_) were used in lifts case and
di,s(_ontinuiti(,s in tit(, d(,ri':_uiv(,s of l'_md c, arising

front lit(, dis(_onlinuiti(,s in lit(, _lot)(' of the r2_ml)-

platform fmmtion, were ignored.
In conirast with (h(, tra'¢eling-wav(_ method, the

ttouboll, nu,lhod iml)(ts('s no inh(,r(,nt reslri(qiou
on th(, st,h,(qion (if tit(, tim(, int(,rvtd 5+ in relation

to tit(, Sl)a('(, interred AS. Tht, time interval nlay

It(' (_fl<(,n _ts hu'ge _t,s is (_onsist(,nt _ ith the (|(.sit'(,([

nt:('ura('y. This fr(,(,dom lut,s h(,t,n utilized in th,t,
tit(' vtd(mlaliou,-+ by the th)ultolt nl(,tlu)(| Imv(' l)(,(,n

made with the tim(' int,(,rval 5r_().0:_;_:_3, whi<q_ is
twi('(' th(, tim(' inl(,rval tnst,(I '+vith lhe lra'+wling-

w_we nu,lhod. In add|tit)u, Ill(, (_oml)tlt_ttions t)y
the tlouboll method (h) not inw[tuh, the (,lt'e('t,'+ of

rotary inertia ,|nil were stopped at a point just

beyond tilt, l)('_fl,: lmut.

]t will t)(, noted tirol lit(, mmwvi<ml results in

figure 5 tH)l)r(tximat(' tit(' ((,ss(mli_dly ('onvt,rge(1)
Timosh(ml,:o modal solution fairly w(,]l. Bolh

numt,ri(_al m(,lho(ls und(,r(,slinm.l(' lh(' l)('ak ,,<tress,

the trav(,lini_-xvav(' m(,lho(] l)v 14 I)(,r('t'nt nn<l tlt(,

Hotnltoll nwlh<ttl l)v !) l)('r(wnt.

Th(' gr(,att,r a(:(.m'a(.y of the lh)t)holt, r(,sult is

I)arti(q)larly significant mitre(, it xxas ol)tain(,t| ,,'+ith

less ('Oral)irrational hfl)or (lu(, to th(, t_s(,of the

largt,n' time il)t(,t'v_tl, l( tnttst 1)(' l<.('l)t in mind,
ho_v(,v('r, flu(t. (,(_onon)i('t',] use of th(, lloul)olt+

mt,thod )'('(luir('s tlutl it l)e _l)pli('d in ('onn(,(qiot_

with the (,h,m,,ntary th(,orv or x+ith tit(, _t(hliti(tn
of trnnsvt,rs(' shtm.r aloft(,. If hoth rotary in(,t'ti_t
and tt')_,ti,_v(,rs(, sh('au' must It(' itwhu(h'(l, tit(' lahor

z'(,qttir(,(l i)i ;q)l)13ing tit(, lloul)oll mt, thotl is (itna(l -

rt)ph_(l. Fort.unat(,ly, rotary iner(it_, is n(,gligih](,

in m_),ny l)rolth'tns. (_(,e, for (,xand)h', r(,f. 15.)
It. shot)hl lit, met_tion(,(l that tiff, trav(,ling.-'_ art'

i)ro(_(,(lur(,, us so flu" ('otu'(,iv(,(l+ has I)l'OVe(l sonu,-

what s(,nsitiv(' to minor ('hnng(,: in tht, ._(q)(,m('
ust,(l to ol)t_tin r(,('urrt,n('(, formulas. For t'xaml)h',
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the simplest and most obvious scheme (in which
tile II+ and 1I-- (;tlaracteristies are extended

backward from the point 1 (fig. 2) to int(wmediate

points on tile I-- and I+ characteristics connect-
ing points 5 and 2 and points 5 and 4 amt linear

interpolation is used to determine the unknowns

at these int.ermediate points) has been found to

yield significantly less accurate results. A pos-
sible reason for this sensitivity stems from the fact

that: the slope of the basic network of characteristic

lines is dependent on rot.ary inert, ia. In fact,

rotary inertia is necessary to give the beam equa-
tions the wave character essential in the concep-

tion of a traveling-wave method. Thus, in view

of the relatNe negligibility of rotary inertia for

many practical problems, this sensitivity is per-

haps not surprising. In genera.l, it, must be con-

eluded that. a traveling-wave mmwrical method of

anMysis which is superior to the Houbolt method

has not: yet. been devised.
Numerical results haw, also been ol)taine(I for

the response to the triangular t)ulse load by super-
position of the ramp-platform results. These

results are shown in figure 7. The results indicate

that more degrees of freedom must be taken with

both l)rocedures to predict a(le(tuately the response

of the t)eam to the given triangular pulse load, and
from this example it appears that the modal

method of solution is to be preferred, ttowever,

the simple problems discussed herein (to not per

tray the main advantages of numerical methods.

For example, numeric.al methods are readily ex-

tended to apply to nonuniform beams and con-
veniently adapted to the use of mo(lern high-spec(t

computers. A fundamental (.haracteristi(, of mt-

mcrical methods is the replacement of professional

engineering time by routine eoml)uting time.

Hence, numeri('al procedures are not to be (,on-
demned on the basis of tim results in figln'e 7.

Tim scle('tion of the best method requires the ('on-
sideration of all these factors in relation to the

specific prol)leni.

CONCLUDING REMARKS

Williams type modal solutions, based on both

the elementary and Timoshenko beam theories,

have been given for the response of several uni-
form beams to tr general transient loa(t. The

resl)onse to any specific load may be ot)tained
from these solutions by performing a series of

indicate(I direct int,cgrations of the load function.

Wyl)ieal comI)uted results have been shown for

the shear response of a fi'ee-free beam to various
conccnlrat ed loads.

The convergcn('e of modal solutions is shown to

dcpen(I t)oth on the hislory and distribution of the
load. Decreasing either the duration of the load-

ing or the region over whicll the loa(I is at)plied

reduces the rate of conw, rgen('e and may t)ro(lu('e

divergence.
The need for a more reIim, d theory, as compared

to elementary theory, is intimately related to the

rate of eonwwgence of the modal solution. If
modes whi(,h are strongly depen(lenl on trans-

verse shear and rotary inertia contribute a large

portion of the response, Timoshenko's theory must
be used.

Comparison of the Houbol! and traveling-wave
tmlnerical methods indicates that tim Houbolt

procedure has many advantages over the traveling-

wave procedure as so fat" conceived.

LANGLEY |{,E,'-;FARCH (',ENTER,

NATIONAL AERONAUTICS AND SI'ACIq ADMINISTRATION_

LANGI_EY FIELD, VA., February 5, 1958.



APPENDIX

SYMMETRICAL NATURAL VIBRATION OF A UNIFORM FREE-FREE
TIMOSHENKO BEAM WITH A CONCENTRATED MASS

NATURAL MODES AND FREQUENCIES

The differential equations and boumlarv condi-

tions governing symmetrical natural vibration of
a free-free beana with a concentrated mass at its

centre' may be written in the following ,limcnsion-
h, ss forms:

"3

': (A 1)
1

_(o) = {) (Aea)

¢/(1):=0 (A2b)

._'(l)--6(I) =:0 (A2(:)

1 _
/<3 y' (0) ""/77_k2_ "0)= {t (A2d)

where _(,,t);g,(_) is th(, Imtm'al rood{, and k is pro-

l)oPtional to the cir('ular fre(luen(.y of vibration.
Each of the :olutions of equations (A1} has the
fOl'lll

_b(_) ll_ _

where .l and B ape aPl}itravy ('otlstanls. Sut)sli-

luting this foPm into equations (AI) lea(Is to the
biqua(h'ati(' (,{luation

X%k201._-+ kn,'-')X_ i k'2(k_k/2k_, 2-1) 0 A3)

and to the following volationship In,tw(,en _1 and
B:

B X2 _'_':'_'/. 1 (A4)

Equation (A3) h_s the f'o_lPsolutions X i_and

30
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The sol_ltions of equation (A7) are the natural

fP('(lUenci(,s of vibration/,% where i=0, 1 ')
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For k=k_, the homogen(,ous algebraic equations may be solved for the relative magnitudes of the

quantities ('t, (':, (++, and (+4. For i=1, 2,..., the resulting vibration mode shapes may be
written in tile fm'm

, sin Hi sinh o+, __ fJ,=--k,=k?

+, °I-A, (sin 2_ff--_ _ sm[t oq_ (+-- 1,., . . .)

.,5_2--/cy/c/(_ sin ¢_ .... sinha_ . _. __ _/--/c/k? • ,

P_ l at Pi a_ o_i --p+

L ' \ a, IlJ

(AS)

_,V|I (q'('

The rigill body mo(le, corr(,sl)onding to ku=O,

has the ('ompom,nts _0(_)=( _and _o(_)=0.

ORTHOaONAUTY OF THe: NATVRAL MODES

The differ(,ntial equations (A1) are satisfied by

any of the infinite numt)er of natural modes aml

('orresl)omling fre(tu(m('ies. Thus, for the ilh nmde,

1

1 I._/-4_,)' +ky_,=o
It*s2 '

l_('t the first of these equations I)e multil)lie(1 I)y

the rotational component g,j of the jth ino(le and

the second by lhc translational compotwnl ._. If

tit(, resuhing equations are added an(1 intt,grat(,(I

over the beam length, there results

_;' j',, o k) ('_''-¢')_/_

hHegrating hy l)arts the first two int(,grals on the

right-hand side of th(, t)rece(ling equation yiehls:

j, [, q'
0 ....JO

+ (' !_ (_/--_9)d(+_)'g,+ (Ag)Oo k_ (_),'--4_,) %' ,1_

sin fl_--_ sinh a_

i l _ -

cos _+1 ('osh _,

This I))'o('(,ss is vali(l also if the roh,s of the /(h

and jth mo(h,s av(, revers(,(l, hm,r('hanging i and

j in ('(luation (A9) and sul)tracting th(, r(,sult from

e(ltmtion (Ag) h,a(Is to

l _, - , t It--k_ _ (y, --_)y,+_ _--+b_ _b, o CA|0)

If now tit(, l)oun(htrL v ('on(liliot_s ((,(l s. (A2)) qr(,

imposed, (,quation (AI0 is foun(I to r(,(lu<'(, to

0

• 2 -- -- --- - (k_---k,). +y,(O)yj0)

OF

£'(,,
sillCe

5

(j_;) (.All)

Equation (All) is the orthogonality condition

satisfied 1)y the natural vii)cation nmtles of a tmi-
form fcet,-fre(_ Tinmshenko hi,am with a, ('onc(,n-

trated mass at th(, (.enter.
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DETERMINATION OF THE GENERALIZED MASS

Tilt' determination of the generalized mass

m,=J[ ( {l +-5:5(t;)]_,'l(r:)+kR,'_,i'l(_) }di

by direct integration is a, somewhat laborious
process for i_O. Fortunately, mi can be ex-
pressed in lerms of certain boundary values of the
mode shapes by the apl)lication of a limiting
process to equation (AIO) in which the functions
Yi and ¢, are considered as eoniimious functions
of k. Thus, if

kj=ki+dk

itlld

_kj-- ¢',+(/¢_= 4',+_ dk

equation (AI0) bceomes, in lhe linfit, as dk ap-
1) I'()ll ('bUS Zlq'() _

.[':,"+ [D
1 () _, _)J,,,\ ,/0¢,,,_

-z-:(Sh- i/ --okJk:_i

(o,) ],-¢i ok¢ (/=1,2,...)
k=k i 0

(A12)

This (,(lUll.lion is applicat)i(' to unifornl biqllns and
lllay be exlelltied, if desired, to llonllniforln })elilllS.

On substitution of the boundary conditions (eqs
(A2)), equation (Al2) reduces to

' [y?+ k.,_?]dk=-- _7:j? (0)

1 [_ ]2ki _,(l) ¢/(1) k:ki
(7=1,2,...)

Hen('(', he generalized mass is given by

Note that only the second boundary condition

(cq. (A2t))) is alt.ercd by differentiation witli re-

st)eel to k. This arises from the fact thai only

this I)Olllldal'v condition depends for its satisfac-

tion (in t.|lC fre(llll, n(!y equal.ion (A7); that is, tile

mode sll_l)es (eqs, (A8)) salisfy the other boundary

con(iitiolis for illiV vahle of k t)ul salisfy t,(lUalion

(A2b) ()lily for ]:--_'i since

O/

where f(k) is dciim,d by c,quation (A7), I1 is

only I)y virt,uc of this (lel)lmdeJlee of Clip o1" illOl'C

})oundar( ('ondiliOllS on llie fre(tuell(.v e(tllll, lion

tilllt e(tuittions (AI2) yMd a value of mi. Hence,

it, in/ist be conehlded that,, for a t)eam for which

IlOne Of the l)oundary ('on(iilions del)end fro" their

satisfa('tion ell the fretl/leilt'V e(luation (as, for

examl)h' a sinll)ly supporled tit,am), e(tualions
(AI2) ale not. al)l)lical)h,. For such a tlelun, mi
is (h,t.erniined I)y direct integralion.
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